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Abstract The bending stiffness of the alveolar wall is the-

oretically analyzed in this study through analytical modeling.

First, the alveolar wall facet and its characteristics were geo-

metrically simplified and then modeled using known physical

laws. Bending stiffness is shown to be dependent on alveolar

wall thickness, density, Poisson’s ratio and speed of the lon-

gitudinal wave. The normal bending stiffness of the alveolar

wall was further determined. For the adult human, the normal

bending stiffness is calculated to be 71.0–414.7 nNm, while

for the adult mouse it is 1.9–30.0 nNm. The results of this

study can be used as a reference for future pulmonary

emphysema and fibrosis studies, as the bending stiffness of

alveolar wall will be lower and higher, respectively; than the

theoretically determined normal values.

Keywords Stiffness � Theoretical modeling �
Biomechanics � Pulmonary emphysema � Pulmonary

fibrosis

Introduction

The bending stiffness or flexural rigidity of the alveolar

wall can act as a mechanical indicator of diseased or

damaged lung parenchyma. Generally, the alveolar wall in

lungs with pulmonary emphysema will have low stiffness

values (Parameswaran et al. 2011), while the opposite is

true for pulmonary fibrosis (Pellegrino et al. 2005).

Pulmonary emphysema is caused by alveolar tissue

destruction, loss of small capillary blood vessels and digestion

of elastin and/or collagen within the alveolar walls (de Ryk

et al. 2007). Meanwhile, pulmonary fibrosis is caused by

progressive replacement of normal parenchymal tissue with

collagen-rich extracellular matrix, aberrant accumulation and

activation of fibroblasts and remodeling of the alveolar wall

tissue (Liu et al. 2010). Hence, pulmonary emphysema can be

characterized by a reduction of stiffness, while pulmonary

fibrosis can be characterized by an increase in stiffness.

Data concerning the normal bending stiffness of the

alveolar wall for various animals are not available in the

literature. The stiffness value of the alveolar wall is often

dismissed as being too small and thus ignored in many

experimental studies (Ma and Bates 2012).

In this study, the normal bending stiffness of the alve-

olar wall was theoretically analyzed and determined by

modeling the alveolar wall facet as a flat membrane or

plate. The results can be used as a reference for future

experimental work and diagnosis concerning the condition

of the lung parenchyma.

Methods

Modeling of Alveolar Structure

The component that defines the alveolar structure is its

multifaceted alveolar wall. In this theoretical study, the

facet of the alveolar wall along with its characteristics were

simplified, modeled and analyzed. Some assumptions were

made for the purpose of modeling.
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The alveolar wall contains elastin fibers and plasma

membranes (with lipid bilayers). These elements furnish

the alveolar wall with elastic properties. If the deformation

experienced by the alveolar wall is considered reversible

and smaller than its elastic limit, then the alveolar wall can

be assumed to obey Hooke’s law (Shabana 1995). The

linear strain in the alveolar wall varies from 0 to 0.05

during normal tidal breathing (Roan and Waters 2011).

Furthermore, Belete et al. (2010) state that wounding of

cells in parenchymal tissue occurs significantly at a linear

strain value of 0.08. Thus, this value is regarded here as the

yield linear strain. Therefore, the linear theory of elasticity

can be applied to the alveolar wall undergoing normal tidal

breathing as the strain is below the elastic limit.

The alveolar wall is also assumed to be isotropic as it is

homogenous (Gefen et al. 1999). The elasticity of the

alveolar wall is characterized here with its elastic modulus,

Poisson’s ratio and strain components. The facet of the

alveolar wall is shaped as a flat, irregular polygon (Prange

2003). Thus, the alveolar wall facet is assumed to be a flat

membrane or plate.

Bending Stiffness

The stiffness of membranes or plates is determined by the

flexural rigidity, also known as bending stiffness. Bending

stiffness is given as (Fung 1996)

De ¼ Ed3=12ð1� u2Þ ð1Þ

Bending stiffness depends on Young’s modulus (E),

thickness (d) and Poisson’s ratio (u) of the membrane or

plate.

Elastic Modulus

An indirect calculation is conducted to obtain the equation

for Young’s modulus of the alveolar wall model. The speed

of longitudinal sound waves (cL) in biological soft tissue is

dependent on the bulk modulus (K) and density (q) of the

tissue (Matre and Dahl 2005):

cL ¼ ðK=qÞ1=2 ð2Þ

The equation for Young’s modulus (E) can be

determined by utilizing its relationship with the bulk

modulus. The Poisson’s ratio of medium is denoted as u.

E ¼ 3Kð1� 2uÞ ð3Þ

E ¼ 3ðqc2
LÞð1� 2uÞ ð4Þ

Bending Stiffness of the Alveolar Wall Model

The equation for bending stiffness of the alveolar wall

model is obtained by substituting Eq. 4 into Eq. 1:

De ¼ Ed3=12ð1� u2Þ
¼ ½3ðqc2

LÞð1� 2uÞ�d3=12ð1� u2Þ

De ¼ 0:25d3qc2
L

ð1� 2uÞ
ð1� u2Þ ð5Þ

According to Eq. 5, the bending stiffness of the alveolar

wall model depends on four quantities of the alveolar wall.

Bending stiffness has power relationships with the

thickness and the speed of the longitudinal wave but a

negative relationship with Poisson’s ratio. Bending

stiffness further depends linearly on the density.

Information concerning the density, thickness, Poisson’s

ratio and speed of the longitudinal wave in pulmonary

fibrosis and emphysema tissues is sparse. As gleaned from

the literature, the density of emphysematous tissue is less

(Guenard et al. 1992) but Poisson’s ratio is estimated to be

higher (Brewer et al. 2003) than in normal tissue. Mean-

while, in pulmonary fibrosis, the alveolar wall is thicker

(Soto and Lucey 2009) and the speed of the longitudinal

wave is slightly higher than in normal tissue (Boozari et al.

2010). Therefore, bending stiffness generally is smaller for

pulmonary emphysema and higher for fibrosis compared to

normal alveolar tissues.

Results

Normal Bending Stiffness

The alveolar wall is composed of soft tissues. Hence, the

range of density of the alveolar wall in interval arithmetic

notation is {1026, 1068} kg/m3, while the longitudinal

wave propagation speed is {1490, 1610} (Ludwig 1950).

Furthermore, Poisson’s ratio of the alveolar wall is {0.35,

0.45} (Lai-Fook et al. 1976). Thus, substitution of these

values into Eq. 5 results in

De ¼ 0:25d3ðqc2
LÞð1� 2uÞ=ð1� u2Þ

¼ 0:25d3ðf1026, 1068g )(f1490, 1610g2Þ
ð1� 2½f0:35; 0:45g�Þ=ð1� ½f0:35; 0:45g�2Þ

De ¼ f0:071; 0:24g � 109d3 Nm ð6Þ

The resulting bending stiffness curve of the alveolar wall

model is depicted in Fig. 1. The normal bending stiffness of

alveolar wall can be determined by applying the value of

normal alveolar wall thickness into Eq. 6 or the Fig. 1.

Verification

The modeling done in this study was verified through the

comparison of calculated theoretical data (using Poisson’s

ratio = 0.35), with the experimental data of bending
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stiffness for egg-lecithin membrane (Bouvrais 2012) and

for polyethylene membrane (Sackmann 1995) (Table 1).

The calculated theoretical values are in line with the

experimental data.

Discussion

The range of values of normal bending stiffness depends

primarily on the thickness of the alveolar wall, which

varies with the type of species. For example, the adult

mouse with a normal alveolar wall thickness of 3–5 lm

(Choi et al. 2009) is predicted to have normal bending

stiffness of the alveolar wall of 1.9–30.0 nNm. Meanwhile,

for the adult human with a normal alveolar wall thickness

of 10–12 lm (Choi et al. 2009), the range is

71.0–414.7 nNm. The normal bending stiffness curve of

Fig. 1 can thus be utilized as a reference for normality in

pulmonary emphysema and fibrosis studies of various

species. The normal bending stiffness curve is also testable

for future independent experimental validation of the

modeling done here.

The lung parenchyma contains mostly collagens of Type I

and Type III, which provide the structural framework and

strength of the alveolar wall (Huang et al. 2007). The pro-

teoglycans embed elastin fibers to the collagens, forming the

extracellular matrix (ECM). The elastin fibers are thus

mechanically connected to the collagens. The elastin-colla-

gen network and the interaction of proteoglycans with elastin

fibers provide elasticity in the alveolar wall (Cavalcante et al.

2005). There are also some interstitial smooth muscle cells in

the ECM, which provide a viscoelastic property (Suki et al.

2005). The alveolar wall is built on the foundation of the

ECM. The ECM acts like a hexagonal spring network (Ma

and Bates 2012). A hexagonal spring matrix needs con-

straint, links and tethers to be stable and have a bending

modulus (Krajcinovic 1996). Hence, the alveolar wall has a

bending modulus (Khan et al. 2010) as it is interconnected

with other alveolar walls, akin to the honeycomb structure.

However, pulmonary emphysema and fibrosis can alter the

constraint, links and tethers of the alveolar wall and, there-

fore, the bending rigidity of the alveolar wall.

In pulmonary fibrosis, the stiffness of the alveolar wall is

increased and large pressure is needed for breathing, while it

is the opposite for pulmonary emphysema. Several internal

and external factors can alter the stiffness of the alveolar

wall. The biochemical microenvironment and diseases may

alter the ECM and cause emphysema or fibrosis (Suki et al.

2005). Furthermore, cigarette smoke increases the expres-

sion of collagen mRNA through elastase released by alveolar

macrophages (Lucey et al. 1998). This scars the alveolar

wall, resulting in fibrosis, which consequently increases the

stiffness of the alveolar wall. Ventilator-induced lung injury

and ultrasound-induced lung hemorrhage also can produce

pulmonary fibrosis.

According to this study, the normal bending stiffness of

the alveolar wall is small but not negligible. Hence, it

should not be ignored in experimental studies while the

Fig. 1 Ranges of bending

stiffness of the alveolar wall

model versus its thickness

Table 1 Bending stiffness values of calculated theoretical data (using

Poisson’s ratio = 0.35) and of experimental data for egg-lecithin

membrane (Bouvrais 2012) and polyethylene membrane (Sackmann

1995)

Membrane

type

Young’s

modulus

(MPa)

Thickness

(nm)

Bending stiffness (Nm)

Experimental Calculated

Egg-lecithin 28 3.6 2.0 9 10-19 1.25 9 10-19

Polyethylene 3,000 5.0 2.0 9 10-17 3.60 9 10-17
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alveolar wall should be considered as a membrane instead a

thin plate (Vepa 2010). This study is valid below the yield

linear strain of the alveolar wall of 0.08 (Belete et al. 2010)

as the alveolar wall was assumed to be linear.
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